Code Expplanation:
Import the Required Libraries
from sklearn.preprocessing import MinMaxScaler
import numpy as np
MinMaxScaler is imported from sklearn.preprocessing — it is used for normalizing data to a specific range (default range = 0 to 1).
numpy is imported as np — it helps in handling arrays and matrices.
Create a Scaler Object
scaler = MinMaxScaler()
This line creates a MinMaxScaler object named scaler.
The scaler will transform data so that:
Scaled Value=(max−min)(x−min)
Create Input Data Using NumPy
data = np.array([[2], [4]])
data is a 2D NumPy array
The values are:
2
4
Here:
min = 2
max = 4
Apply Min-Max Scaling
print(scaler.fit_transform(data)[0][0])
fit_transform(data) does two things:
fit → finds min and max
transform → applies the scaling formula
For the first value 2, the formula becomes:
[0][0] picks the first row, first column value
So the output is:
Final Output
0.0


0 Comments:
Post a Comment