Thursday, 13 November 2025

Python Coding challenge - Day 843| What is the output of the following Python Code?

 


Code Explanation:

1. Defining the Class
class A:

A new class named A is created.

This acts as a blueprint for creating objects (instances).

2. Declaring a Class Variable
count = 0

count is a class variable, shared by all objects of class A.

It belongs to the class itself, not to individual instances.

Initially, A.count = 0.

3. Defining the Constructor
def __init__(self):
    A.count += 1

__init__ is the constructor, called automatically every time an object of class A is created.

Each time an object is created, this line increases A.count by 1.

So it counts how many objects have been created.

4. Loop to Create Multiple Objects
for i in range(3):
    a = A()

The loop runs 3 times (i = 0, 1, 2).

Each time, a new object a of class A is created, and the constructor runs.

Let’s trace it:

Iteration Action A.count value
1st (i=0) new A() created 1
2nd (i=1) new A() created 2
3rd (i=2) new A() created 3

After the loop ends, A.count = 3.

The variable a refers to the last object created in the loop.

5. Printing the Count
print(a.count)

Here, we access count through the instance a, but since count is a class variable, Python looks it up in the class (A.count).

The value is 3.

Final Output
3

500 Days Python Coding Challenges with Explanation

10 Python One-Liners That Will Blow Your Mind

 



1 Reverse a string


text="Python"
print(text[::-1])

#source code --> clcoding.com 

Output:

nohtyP


2 Swap two vairables without a temp variable


a,b=5,20
a,b=b,a
print(a,b)

#source code --> clcoding.com 

Output:

20 5

3. check the string is palindrome


word="madam"
print(word==word[: :-1])

#source code --> clcoding.com 

Output:

True


4. Count Frequency of each element in a list


from collections import Counter
print(Counter(['a','b','c','b','a']))

#source code --> clcoding.com 

Output:

Counter({'a': 2, 'b': 2, 'c': 1})

5. Get all even numbers from a list


nums=[1,2,3,4,5,6,7,8]
print([n for n in nums if n%2==0])

#source code --> clcoding.com 

Output:

[2, 4, 6, 8]


6. Flatten a nested list


nested=[[1,2],[3,4],[5,6]]
print([x for sub in nested for x in sub])

#source code --> clcoding.com 

Output:

[1, 2, 3, 4, 5, 6]

7. Find the factorial of a number


import math
print(math.factorial(5))

#source code --> clcoding.com 
Output:
120

8. Find common elements between two list


a=[1,2,4,5,4]
b=[3,4,5,1,2]
print(list(set(a)& set(b)))

#source code --> clcoding.com 

Output:

[1, 2, 4, 5]

10. one liner FizzBuzz


print(['Fizz'*(i%3==0)+'Buzz'*(i%5==0) or i for i in range(1,16)])

#source code --> clcoding.com 

Output:

[1, 2, 'Fizz', 4, 'Buzz', 'Fizz', 7, 8, 'Fizz', 'Buzz', 11, 'Fizz', 13, 14, 'FizzBuzz']

7 Lesser-Known Pandas Functions That’ll Blow Your Mind


1. explode()=Turns list items into rows

import pandas as pd

df = pd.DataFrame({"Name": ["A", "B"], 
                   "Tags": [["x", "y"], ["p", "q"]]})
df.explode("Tags")

#source code --> clcoding.com
Output:
NameTags
0Ax
0Ay
1Bp
1Bq

2. query()- Filter rows using expression


df = pd.DataFrame({"Age":[20,25,30], "Score":[90,85,70]})
df.query("Age > 22 and Score > 80")

#source code --> clcoding.com

Output:

AgeScore
12585

3. nlargets()- Get the top n rows


df=pd.DataFrame({"Name":["A","B","C"],"Marks":[50,95,80]})
df.nlargest(1,"Marks")
#source code --> clcoding.com

Output:

NameMarks
1B95

4. nsmallest()- Get the lowest n rows


df=pd.DataFrame({"A":[10,3,7],"B":[4,9,1]})
df.nsmallest(2,"A")
#source code --> clcoding.com

Output:

AB
139
271



5. pivot_table()- Create summary table automatically


df=pd.DataFrame({
    "City":["A","A","B","B"],
    "Sales": [10,20,30,5]
})
df.pivot_table(values="Sales",index="City",aggfunc="sum")

#source code --> clcoding.com

Output:

Sales
City
A30
B35

6. fillna(method="ffill")- Fills missing values forward


df = pd.DataFrame({"X":[1,None,None,4]})
df.fillna(method="ffill")

#source code --> clcoding.com

Output:

X
01.0
11.0
21.0
34.0

7. assign()- Adds new column cleanly


df = pd.DataFrame({"A":[1,2,3]})
df = df.assign(B=df.A * 10)
print(df)

#source code --> clcoding.com

Output:

   A   B
0  1  10
1  2  20
2  3  30



Wednesday, 12 November 2025

Python Coding Challenge - Question with Answer (01131125)

 


Explanation:

Create a List
nums = [2, 4, 6]

A list named nums is created with three integer elements: 2, 4, and 6.

This will be used to calculate the average of its elements later.

Initialize Loop Control Variables
i = 0
s = 0

i → Acts as a loop counter, starting from 0.

s → A sum accumulator initialized to 0.
It will store the running total of the numbers in the list.

Start the While Loop
while i < len(nums):

The loop runs as long as i is less than the length of the list nums.

Since len(nums) is 3, this means the loop will run while i = 0, 1, 2.

This ensures every element in the list is processed once.

Add the Current Element to the Sum
    s += nums[i]

At each loop iteration:

The element at index i is accessed: nums[i].

It is added to the sum s.

Example of how s changes:

When i=0: s = 0 + 2 = 2

When i=1: s = 2 + 4 = 6

When i=2: s = 6 + 6 = 12

Increment the Loop Counter
    i += 1

After processing one element, i increases by 1.

This moves to the next element of the list in the next iteration.

Print the Final Result
print(s // len(nums))

Once the loop ends, the total sum s is 12.

The expression s // len(nums) performs integer division:

12 // 3 = 4

Hence, it prints the average (integer form) of the list elements.

Final Output

4

Probability and Statistics using Python


Top 8 Python Libraries for Deep Learning in 2026

 


1 Tensorflow: The insdustry standard

import tensorflow as tf

x = tf.constant([[1.0, 2.0], [3.0, 4.0]])
y = tf.constant([[5.0, 6.0], [7.0, 8.0]])
result = tf.matmul(x, y)
print(result)

Output:

tf.Tensor(
[[19. 22.]
 [43. 50.]], shape=(2, 2), dtype=float32)

2. Pytocrh- Reasearchers favourite

import torch
x-torch.tensor([[1.,2.],[3.,4.]])
y=torch.tensor([[2.,0.],[0.,2.]])
print(torch.mm(x,y))

Output:

tensor([[2., 4.],
        [6., 8.]])


3. Kera- The beginner deep learning Friend

from tensorflow import keras
from tensorflow.keras import layers
model=keras.Sequential([
    keras.Input(shape=(3,)),
    layers.Dense(4,activation='relu'),
    layers.Dense(1)
])
model.summary()

Output:

Popular Posts

Categories

100 Python Programs for Beginner (118) AI (122) Android (25) AngularJS (1) Api (6) Assembly Language (2) aws (27) Azure (8) BI (10) book (4) Books (246) Bootcamp (1) C (78) C# (12) C++ (83) Course (81) Coursera (295) courses (2) Cybersecurity (28) Data Analysis (24) Data Analytics (16) data management (15) Data Science (203) Data Strucures (13) Deep Learning (47) Django (16) Downloads (3) edx (21) Engineering (15) Euron (30) Events (7) Excel (17) Factorial (1) Finance (9) flask (3) flutter (1) FPL (17) Generative AI (42) Git (6) Google (46) Hadoop (3) HTML Quiz (1) HTML&CSS (48) IBM (41) IoT (3) IS (25) Java (98) Java quiz (1) Leet Code (4) Machine Learning (162) Meta (24) MICHIGAN (5) microsoft (9) Nvidia (8) p (1) Pandas (10) PHP (20) Projects (32) pyth (2) Python (1203) Python Coding Challenge (838) Python Quiz (320) Python Tips (5) Questions (2) R (71) React (7) Scripting (3) security (4) Selenium Webdriver (4) Software (19) SQL (44) Udemy (15) UX Research (1) web application (11) Web development (7) web scraping (3)

Followers

Python Coding for Kids ( Free Demo for Everyone)