Thursday, 16 October 2025

Python Coding challenge - Day 792| What is the output of the following Python Code?

 


Code Explanation:

Import Libraries
import statsmodels.api as sm
import numpy as np

statsmodels.api → For statistical modeling (OLS regression, t-tests, etc.).

numpy → Provides numerical operations, arrays, etc.

Both are required to prepare data and fit the regression.

Create Feature (Independent Variable) with Intercept
X = sm.add_constant([1, 2, 3, 4, 5])

[1, 2, 3, 4, 5] → independent variable x.

sm.add_constant() → Adds a column of ones to account for the intercept in the regression.

After this line, X looks like:

[[1. 1.]
 [1. 2.]
 [1. 3.]
 [1. 4.]
 [1. 5.]]

First column = intercept
Second column = actual x values

Define Dependent Variable (y)
y = [2, 4, 5, 4, 5]


These are the target values we want to predict using x.

Notice: The data is not perfectly linear — the y-values fluctuate a little. This is why the slope is not exactly 1 or 0.8.

Fit the OLS Regression Model
model = sm.OLS(y, X).fit()

sm.OLS(y, X) → Creates an Ordinary Least Squares (OLS) regression model.

.fit() → Finds the best-fit line that minimizes the sum of squared errors between predicted and actual y-values.

The model will estimate:

y=intercept+(slope×x)

Access and Round the Slope Coefficient
print(round(model.params[1], 2))

model.params → Array of coefficients: [intercept, slope]

params[1] → Slope of x

round(..., 2) → Rounds slope to 2 decimal places

Output 
0.6

0 Comments:

Post a Comment

Popular Posts

Categories

100 Python Programs for Beginner (118) AI (152) Android (25) AngularJS (1) Api (6) Assembly Language (2) aws (27) Azure (8) BI (10) Books (251) Bootcamp (1) C (78) C# (12) C++ (83) Course (84) Coursera (298) Cybersecurity (28) Data Analysis (24) Data Analytics (16) data management (15) Data Science (217) Data Strucures (13) Deep Learning (68) Django (16) Downloads (3) edx (21) Engineering (15) Euron (30) Events (7) Excel (17) Finance (9) flask (3) flutter (1) FPL (17) Generative AI (47) Git (6) Google (47) Hadoop (3) HTML Quiz (1) HTML&CSS (48) IBM (41) IoT (3) IS (25) Java (99) Leet Code (4) Machine Learning (186) Meta (24) MICHIGAN (5) microsoft (9) Nvidia (8) Pandas (11) PHP (20) Projects (32) Python (1218) Python Coding Challenge (884) Python Quiz (342) Python Tips (5) Questions (2) R (72) React (7) Scripting (3) security (4) Selenium Webdriver (4) Software (19) SQL (45) Udemy (17) UX Research (1) web application (11) Web development (7) web scraping (3)

Followers

Python Coding for Kids ( Free Demo for Everyone)