Code Explanation:
1. Import Required Libraries
from sklearn.linear_model import LinearRegression
import numpy as np
LinearRegression → scikit-learn class for fitting linear models.
numpy → used to create numerical arrays.
2. Define Input Features
X = np.array([[1],[2],[3]])
Creates a 2D array of shape (3,1).
This represents our input values (independent variable).
Value of X:
array([[1],
[2],
[3]])
3. Define Target Values
y = np.array([2,4,6])
Creates a 1D array of outputs (dependent variable).
This is the value we want the model to predict.
Value of y:
array([2, 4, 6])
4. Train the Linear Regression Model
model = LinearRegression().fit(X, y)
Fits a straight line through the data using ordinary least squares (OLS).
The model learns two things:
Coefficient (slope): [2.]
Intercept: 0.0
So the learned equation is:
๐ฆ=2๐ฅ+0
5. Make Prediction
print(round(model.predict([[4]])[0], 2))
model.predict([[4]]) → asks model: “What is y when x = 4?”
Expected mathematically:
y=2⋅4=8
scikit-learn may give something like 7.999999999999998 (floating-point issue).
The round(..., 2) fixes it to 2 decimal places.
Final Output
8.0
Download Book - 500 Days Python Coding Challenges with Explanation
.png)

0 Comments:
Post a Comment