Tuesday, 17 February 2026

๐Ÿ“Š Day 24: Calendar Heatmap in Python

 

๐Ÿ“Š Day 24: Calendar Heatmap in Python

๐Ÿ”น What is a Calendar Heatmap?

A Calendar Heatmap visualizes data values day-by-day across a calendar using color intensity.
Each cell represents a date, and the color shows the magnitude of activity on that day.


๐Ÿ”น When Should You Use It?

Use a calendar heatmap when:

  • Analyzing daily patterns

  • Tracking habits or activity streaks

  • Visualizing time-series seasonality

  • Showing long-term daily trends


๐Ÿ”น Example Scenario

Suppose you want to analyze:

  • Daily website visits

  • GitHub contributions

  • Sales per day

  • Workout or study streaks

A calendar heatmap helps you instantly see:

  • Busy vs quiet days

  • Weekly patterns

  • Seasonal behavior


๐Ÿ”น Key Idea Behind It

๐Ÿ‘‰ Each square = one day
๐Ÿ‘‰ Color intensity = activity level
๐Ÿ‘‰ Patterns emerge over weeks & months


๐Ÿ”น Python Code (Calendar Heatmap)

import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt

dates = pd.date_range("2023-01-01", "2023-12-31")
values = np.random.randint(1, 10, len(dates))

df = pd.DataFrame({
    "date": dates,
    "value": values
})


df["week"] = df["date"].dt.isocalendar().week.astype(int)
df["weekday"] = df["date"].dt.weekday


calendar_data = df.pivot_table(
    index="week",
    columns="weekday",
    values="value",
    aggfunc="sum"
)


plt.figure(figsize=(12, 6))
sns.heatmap(calendar_data, cmap="YlGnBu")

plt.title("Calendar Heatmap")
plt.xlabel("Day of Week (0=Mon)")
plt.ylabel("Week of Year")

plt.show()


๐Ÿ”น Output Explanation

  • Each cell shows activity for a day

  • Darker colors mean higher values

  • Horizontal patterns show weekly trends

  • Easy to spot streaks and gaps


๐Ÿ”น Calendar Heatmap vs Regular Heatmap

FeatureCalendar HeatmapRegular Heatmap
Time-basedYesNo
LayoutCalendar-likeMatrix
Use caseDaily trendsCorrelations
StorytellingHighMedium

๐Ÿ”น Key Takeaways

  • Calendar heatmaps reveal daily behavior patterns

  • Ideal for habit tracking & time analysis

  • Excellent for long-term datasets

  • Very popular in analytics & dashboards


0 Comments:

Post a Comment

Popular Posts

Categories

100 Python Programs for Beginner (118) AI (200) Android (25) AngularJS (1) Api (7) Assembly Language (2) aws (28) Azure (8) BI (10) Books (262) Bootcamp (1) C (78) C# (12) C++ (83) Course (84) Coursera (299) Cybersecurity (29) data (1) Data Analysis (25) Data Analytics (18) data management (15) Data Science (285) Data Strucures (15) Deep Learning (117) Django (16) Downloads (3) edx (21) Engineering (15) Euron (30) Events (7) Excel (18) Finance (9) flask (3) flutter (1) FPL (17) Generative AI (59) Git (9) Google (47) Hadoop (3) HTML Quiz (1) HTML&CSS (48) IBM (41) IoT (3) IS (25) Java (99) Leet Code (4) Machine Learning (241) Meta (24) MICHIGAN (5) microsoft (9) Nvidia (8) Pandas (13) PHP (20) Projects (32) Python (1254) Python Coding Challenge (1030) Python Mistakes (50) Python Quiz (422) Python Tips (5) Questions (3) R (72) React (7) Scripting (3) security (4) Selenium Webdriver (4) Software (19) SQL (46) Udemy (17) UX Research (1) web application (11) Web development (8) web scraping (3)

Followers

Python Coding for Kids ( Free Demo for Everyone)