Monday, 16 February 2026

๐Ÿ“Š Day 21: Stacked Area Chart in Python

 

๐Ÿ“Š Day 21: Stacked Area Chart in Python

๐Ÿ”น What is a Stacked Area Chart?

A Stacked Area Chart displays multiple data series stacked on top of each other.
It shows how individual parts contribute to a total over time.


๐Ÿ”น When Should You Use It?

Use a stacked area chart when:

  • Showing part-to-whole relationships

  • Visualizing cumulative trends

  • Comparing contributions of multiple categories

  • Tracking how components change over time


๐Ÿ”น Example Scenario

Suppose you are analyzing:

  • Traffic sources (Organic, Paid, Referral)

  • Sales by product categories

  • Energy usage by source

A stacked area chart helps you see:

  • Overall growth trend

  • Individual category contributions

  • Shifts in dominance over time


๐Ÿ”น Key Idea Behind It

๐Ÿ‘‰ X-axis represents time or categories
๐Ÿ‘‰ Areas are stacked vertically
๐Ÿ‘‰ Top line shows the total


๐Ÿ”น Python Code (Stacked Area Chart)

import matplotlib.pyplot as plt
months = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun'] product_a = [30, 40, 45, 50, 60, 70] product_b = [20, 30, 35, 40, 45, 50] product_c = [10, 20, 25, 30, 35, 40]
plt.stackplot(months, product_a, product_b, product_c) plt.xlabel("Months")
plt.ylabel("Sales") plt.title("Stacked Area Chart Example") plt.legend(["Product A", "Product B", "Product C"])

plt.show()

๐Ÿ”น Output Explanation

  • Each colored area represents one category

  • Total height = combined value of all categories

  • Shows both individual trends and overall growth

  • Easy to compare contributions over time


๐Ÿ”น Stacked Area Chart vs Area Chart

FeatureStacked Area ChartArea Chart
Series countMultipleSingle
PurposeContribution analysisTrend analysis
Total viewYesNo
ComplexityMediumSimple

๐Ÿ”น Key Takeaways

  • Stacked area charts show part-to-whole trends

  • Best for cumulative time-series data

  • Avoid too many categories

  • Order of stacking affects readability

0 Comments:

Post a Comment

Popular Posts

Categories

100 Python Programs for Beginner (118) AI (199) Android (25) AngularJS (1) Api (7) Assembly Language (2) aws (28) Azure (8) BI (10) Books (262) Bootcamp (1) C (78) C# (12) C++ (83) Course (84) Coursera (299) Cybersecurity (29) data (1) Data Analysis (25) Data Analytics (18) data management (15) Data Science (281) Data Strucures (15) Deep Learning (116) Django (16) Downloads (3) edx (21) Engineering (15) Euron (30) Events (7) Excel (18) Finance (9) flask (3) flutter (1) FPL (17) Generative AI (59) Git (9) Google (47) Hadoop (3) HTML Quiz (1) HTML&CSS (48) IBM (41) IoT (3) IS (25) Java (99) Leet Code (4) Machine Learning (240) Meta (24) MICHIGAN (5) microsoft (9) Nvidia (8) Pandas (13) PHP (20) Projects (32) Python (1253) Python Coding Challenge (1028) Python Mistakes (50) Python Quiz (421) Python Tips (5) Questions (3) R (72) React (7) Scripting (3) security (4) Selenium Webdriver (4) Software (19) SQL (46) Udemy (17) UX Research (1) web application (11) Web development (8) web scraping (3)

Followers

Python Coding for Kids ( Free Demo for Everyone)