Showing posts with label Machine Learning. Show all posts
Showing posts with label Machine Learning. Show all posts

Thursday 14 December 2023

Machine Learning Engineering for Production (MLOps) Specialization

 


What you'll learn

Design an ML production system end-to-end: project scoping, data needs, modeling strategies, and deployment requirements.

Establish a model baseline, address concept drift, and prototype how to develop, deploy, and continuously improve a productionized ML application.

Build data pipelines by gathering, cleaning, and validating datasets. Establish data lifecycle by using data lineage and provenance metadata tools.

Apply best practices and progressive delivery techniques to maintain and monitor a continuously operating production system.

Join Free:Machine Learning Engineering for Production (MLOps) Specialization

Specialization - 4 course series

Understanding machine learning and deep learning concepts is essential, but if you’re looking to build an effective AI career, you need production engineering capabilities as well. 

Effectively deploying machine learning models requires competencies more commonly found in technical fields such as software engineering and DevOps. Machine learning engineering for production combines the foundational concepts of machine learning with the functional expertise of modern software development and engineering roles. 

The Machine Learning Engineering for Production (MLOps) Specialization covers how to conceptualize, build, and maintain integrated systems that continuously operate in production. In striking contrast with standard machine learning modeling, production systems need to handle relentless evolving data. Moreover, the production system must run non-stop at the minimum cost while producing the maximum performance. In this Specialization, you will learn how to use well-established tools and methodologies for doing all of this effectively and efficiently.

In this Specialization, you will become familiar with the capabilities, challenges, and consequences of machine learning engineering in production. By the end, you will be ready to employ your new production-ready skills to participate in the development of leading-edge AI technology to solve real-world problems.

Applied Learning Project

By the end, you'll be ready to

• Design an ML production system end-to-end: project scoping, data needs, modeling strategies, and deployment requirements

• Establish a model baseline, address concept drift, and prototype how to develop, deploy, and continuously improve a productionized ML application

• Build data pipelines by gathering, cleaning, and validating datasets

• Implement feature engineering, transformation, and selection with TensorFlow Extended

• Establish data lifecycle by leveraging data lineage and provenance metadata tools and follow data evolution with enterprise data schemas

• Apply techniques to manage modeling resources and best serve offline/online inference requests

• Use analytics to address model fairness, explainability issues, and mitigate bottlenecks

• Deliver deployment pipelines for model serving that require different infrastructures

• Apply best practices and progressive delivery techniques to maintain a continuously operating production system.

Machine Learning Specialization

 



What you'll learn

Build ML models with NumPy & scikit-learn, build & train supervised models for prediction & binary classification tasks (linear, logistic regression)

Build & train a neural network with TensorFlow to perform multi-class classification, & build & use decision trees & tree ensemble methods

Apply best practices for ML development & use unsupervised learning techniques for unsupervised learning including clustering & anomaly detection

Build recommender systems with a collaborative filtering approach & a content-based deep learning method & build a deep reinforcement learning model

Join Free : Machine Learning Specialization


Specialization - 3 course series
The Machine Learning Specialization is a foundational online program created in collaboration between DeepLearning.AI and Stanford Online. This beginner-friendly program will teach you the fundamentals of machine learning and how to use these techniques to build real-world AI applications. 

This Specialization is taught by Andrew Ng, an AI visionary who has led critical research at Stanford University and groundbreaking work at Google Brain, Baidu, and Landing.AI to advance the AI field.

This 3-course Specialization is an updated version of Andrew’s pioneering Machine Learning course, rated 4.9 out of 5 and taken by over 4.8 million learners since it launched in 2012. 

It provides a broad introduction to modern machine learning, including supervised learning (multiple linear regression, logistic regression, neural networks, and decision trees), unsupervised learning (clustering, dimensionality reduction, recommender systems), and some of the best practices used in Silicon Valley for artificial intelligence and machine learning innovation (evaluating and tuning models, taking a data-centric approach to improving performance, and more.)

By the end of this Specialization, you will have mastered key concepts and gained the practical know-how to quickly and powerfully apply machine learning to challenging real-world problems. If you’re looking to break into AI or build a career in machine learning, the new Machine Learning Specialization is the best place to start.

Applied Learning Project


By the end of this Specialization, you will be ready to:


• Build machine learning models in Python using popular machine learning libraries NumPy and scikit-learn.

• Build and train supervised machine learning models for prediction and binary classification tasks, including linear regression and logistic regression.

• Build and train a neural network with TensorFlow to perform multi-class classification.

• Apply best practices for machine learning development so that your models generalize to data and tasks in the real world.

• Build and use decision trees and tree ensemble methods, including random forests and boosted trees.

• Use unsupervised learning techniques for unsupervised learning: including clustering and anomaly detection.

• Build recommender systems with a collaborative filtering approach and a content-based deep learning method.

• Build a deep reinforcement learning model.

Sunday 3 December 2023

Machine Learning Applications Using Python: Cases Studies from Healthcare, Retail, and Finance (Free PDF)

 


Gain practical skills in machine learning for finance, healthcare, and retail. This book uses a hands-on approach by providing case studies from each of these domains: you’ll see examples that demonstrate how to use machine learning as a tool for business enhancement. As a domain expert, you will not only discover how machine learning is used in finance, healthcare, and retail, but also work through practical case studies where machine learning has been implemented. 

Machine Learning Applications Using Python is divided into three sections, one for each of the domains (healthcare, finance, and retail). Each section starts with an overview of machine learning and key technological advancements in that domain. You’ll then learn more by using case studies on how organizations are changing the game in their chosen markets. This book has practical case studies with Python code and domain-specific innovative ideas for monetizing machine learning. 


What You Will Learn

Discover applied machine learning processes and principles

Implement machine learning in areas of healthcare, finance, and retail

Avoid the pitfalls of implementing applied machine learning

Build Python machine learning examples in the three subject areas


Who This Book Is For

Data scientists and machine learning professionals.  

Buy : Machine Learning Applications Using Python: Cases Studies from Healthcare, Retail, and Finance


Free PDF :


Sunday 26 November 2023

Approaching (Almost) Any Machine Learning Problem (PDF Book)

 


This book is for people who have some theoretical knowledge of machine learning and deep learning and want to dive into applied machine learning. The book doesn't explain the algorithms but is more oriented towards how and what should you use to solve machine learning and deep learning problems. The book is not for you if you are looking for pure basics. The book is for you if you are looking for guidance on approaching machine learning problems. The book is best enjoyed with a cup of coffee and a laptop/workstation where you can code along.


Table of contents:

- Setting up your working environment

- Supervised vs unsupervised learning

- Cross-validation

- Evaluation metrics

- Arranging machine learning projects

- Approaching categorical variables

- Feature engineering

- Feature selection

- Hyperparameter optimization

- Approaching image classification & segmentation

- Approaching text classification/regression

- Approaching ensembling and stacking

- Approaching reproducible code & model serving


There are no sub-headings. Important terms are written in bold.


I will be answering all your queries related to the book and will be making YouTube tutorials to cover what has not been discussed in the book. To ask questions/doubts, please create an issue on github repo: https://github.com/abhishekkrthakur/approachingalmost

Buy Link : Approaching (Almost) Any Machine Learning Problem 


PDF Link : Approaching (Almost) Any Machine Learning Problem



Popular Posts

Categories

AI (27) Android (24) AngularJS (1) Assembly Language (2) aws (17) Azure (7) BI (10) book (4) Books (118) C (77) C# (12) C++ (82) Course (62) Coursera (180) Cybersecurity (22) data management (11) Data Science (95) Data Strucures (6) Deep Learning (9) Django (6) Downloads (3) edx (2) Engineering (14) Excel (13) Factorial (1) Finance (6) flutter (1) FPL (17) Google (19) Hadoop (3) HTML&CSS (46) IBM (25) IoT (1) IS (25) Java (92) Leet Code (4) Machine Learning (44) Meta (18) MICHIGAN (5) microsoft (4) Pandas (3) PHP (20) Projects (29) Python (753) Python Coding Challenge (232) Questions (2) R (70) React (6) Scripting (1) security (3) Selenium Webdriver (2) Software (17) SQL (40) UX Research (1) web application (8)

Followers

Person climbing a staircase. Learn Data Science from Scratch: online program with 21 courses