Code Explanation:
1. Importing Libraries
import numpy as np
import pandas as pd
What it does:
numpy is imported as np: used for numerical operations and array handling.
pandas is imported as pd: used for creating and manipulating data in tabular form (DataFrames).
2. Creating a NumPy Array
data = np.array([[1, 2], [3, 4]])
What it does:
Creates a 2D NumPy array (a matrix):
[[1, 2],
[3, 4]]
Shape of the array: 2 rows × 2 columns.
3. Creating a Pandas DataFrame
df = pd.DataFrame(data, columns=["A", "B"])
What it does:
Converts the NumPy array into a Pandas DataFrame.
Assigns column names "A" and "B".
The resulting DataFrame df:
\ A B
0 1 2
1 3 4
4. Calculating Column-wise Mean
df.mean()
What it does:
Calculates the mean (average) for each column:
Column A: (1 + 3) / 2 = 2.0
Column B: (2 + 4) / 2 = 3.0
Returns a Pandas Series:
A 2.0
B 3.0
dtype: float64
5. Converting Mean Series to Dictionary
df.mean().to_dict()
What it does:
Converts the Series of means into a Python dictionary.
Result:
{'A': 2.0, 'B': 3.0}
6. Printing the Result
print(df.mean().to_dict())
What it does:
Outputs the dictionary to the console.
Final Output:
{'A': 2.0, 'B': 3.0}
.png)

0 Comments:
Post a Comment