Monday, 4 October 2021

Python Project [An application to save any random article from Wikipedia to a text file].


An application to save any random article from Wikipedia to a text file.



Output of the project






Source Code: 


from bs4 import BeautifulSoup
import requests

# Trying to open a random wikipedia article
# Special:Random opens random articles
res = requests.get("https://en.wikipedia.org/wiki/Special:Random")
res.raise_for_status()

# pip install htmlparser
wiki = BeautifulSoup(res.text, "html.parser")

r = open("random_wiki.txt", "w+", encoding='utf-8')

# Adding the heading to the text file
heading = wiki.find("h1").text

r.write(heading + "\n")
for i in wiki.select("p"):
    # Optional Printing of text
    # print(i.getText())
    r.write(i.getText())

r.close()
print("File Saved as random_wiki.txt")










Join us: https://t.me/jupyter_python

Program that converts arrays into a list, loops through the list to form a string using the chr() function




Input :


#Program that converts arrays into a list, loops through the list to form a string using the chr() function
#clcoding.com
import numpy as np
def ord_to_character(words = ""):
    
    x = np.array([112,121,134,123,32,96,34,56,67,111,98,97,119,105,113])
    
    y = np.array([78,90,104,123,132,53,34,56,97,116,98,27,119,77,117,12])
    
    z = np.array([111,112,134,123,21,32,108,106,89,70,80,103,103,120,121])
    
    letters = x.tolist() + y.tolist()  + z.tolist()
    
    for letter in letters:
        words += chr(letter)
        
        
    return words 


sentence = ord_to_character()
print(sentence)
    
Output :


py†{ `"8CobawiqNZh{„5"8atbwMuop†{ ljYFPggxy



Join us: https://t.me/jupyter_python

Plotting a colourful Scatter Plot using Matplotlib








from matplotlib import pyplot as plt

x = [10,20,30,40,50]
y = [200,300,100,400,500]
colors=[70,20,80,10,50]
sizes=[100,50,300,250,150]

plt.scatter(x,y,c=colors,s=sizes,cmap="Accent",alpha=1.0)
plt.colorbar()
plt.show





Join us: https://t.me/jupyter_python

Plotting Histogram using Pyplot







from matplotlib import pyplot as plt 

marks=[90,50,40,60,55,44,30,10,34,84]
grade_intervals=[0,35,70,100]
plt.title("Student Grades")
plt.hist(marks,grade_intervals,histtype="bar",rwidth=0.5,facecolor="blue")
plt.xticks([0,35,70,100])
plt.xlabel("Percentage")
plt.ylabel("No. of Students")
plt.show()


Join us: https://t.me/jupyter_python

Plotting Colourful Pie Chart In MatPlotlib




from matplotlib import pyplot as plt 

student_performance = ["Excellent","Good","Average","Poor"]
student_values = [15,25,12,8]
plt.figure(figsize=(7,10))
plt.pie(student_values,labels=student_performance,startangle=90,
        explode=[0.2,0,0,0],shadow=True,colors=["black","blue","yellow","red"],autopct="%2.1f%%")


plt.legend(title="Perfomances")
plt.show




Wednesday, 23 June 2021

HANDLING MISSING DATA (FillNa) IN PANDAS



Firstly, we are importing an excel sheet as a DataFrame,
 

import pandas as pd
ds = pd.read_excel("C:\\Users\\mahes\\OneDrive\\Documents\\Students.xlsx")
dt = pd.DataFrame(ds)
print(dt)








Now, Let's perform some operations related to FillNa()











Join us: https://t.me/jupyter_python

HANDLING MISSING DATA (dropna) IN PANDAS


Firstly, we are importing an excel sheet as a DataFrame,
 

import pandas as pd
ds = pd.read_excel("C:\\Users\\mahes\\OneDrive\\Documents\\Students.xlsx")
dt = pd.DataFrame(ds)
print(dt)






Now, Let's perform some operations related to DROPNA


















Join us: https://t.me/jupyter_python

ILOC[ ] IN PANDAS - PYTHON

Firstly, we are importing an excel sheet as a DataFrame,
 
import pandas as pd

ds = pd.read_excel("C:\\Users\\mahes\\OneDrive\\Documents\\Students.xlsx")

dt = pd.DataFrame(ds)






Now, Let's perform some operations related to ILOC 












Join us: https://t.me/jupyter_python

LOC[ ] IN PANDAS - PYTHON



LOC[ ] IN PANDAS

Firstly, we are importing an excel sheet as a DataFrame,
 
import pandas as pd

ds = pd.read_excel("C:\\Users\\mahes\\OneDrive\\Documents\\Students.xlsx")

dt = pd.DataFrame(ds)







Now, Let's perform some operations related to LOC and ILOC 














Join us: https://t.me/jupyter_python

Tuesday, 22 June 2021

EXPORT DATAFRAME TO EXCEL, CSV & TEXT FILE IN PANDAS || SAVE DATAFRAME IN PANDAS

EXPORT DATAFRAME TO EXCEL, CSV & TEXT FILE IN PANDAS 

Firstly, we are importing an excel sheet as a DataFrame,
 
import pandas as pd

st = pd.read_excel("C:\\Users\\mahes\\OneDrive\\Documents\\Students.xlsx")

sd = pd.DataFrame(st)

print(st)



Making some changes in the dataframe


st['Total']=st['Hindi']+st['English'] +st['Science'] +st['History']+st['Mathematics']






Now, exporting the DataFrame as Excel, CSV and Text File


sd.to_excel("C:\\Users\\mahes\\OneDrive\\Desktop\\StudentsNew.xlsx")

sd.to_csv("C:\\Users\\mahes\\OneDrive\\Desktop\\StudentsNew.csv")

sd.to_csv("C:\\Users\\mahes\\OneDrive\\Desktop\\StudentsNew.txt" ,sep = "\t")





As you can see we have created three new files.






Join us: https://t.me/jupyter_python

SORTING DATAFRAME (BY COLUMN) IN PANDAS (Part-2) - PYTHON PROGRAMMING


#SORTING DATAFRAME (BY COLUMN) IN PANDAS (Part-2) - PYTHON PROGRAMMING

Listing Two Rows


df[['Name','Total_Marks']]





df = df.drop(columns = "Total_Marks")
print(df)









Join us: https://t.me/jupyter_python 

MANIPULATING DATAFRAME IN PANDAS (ADD COLUMN , DROP COLUMN) || DATAFRAME MANIPULATIONS


import pandas as pd 
dt = pd.read_excel("C:\\Users\\mahes\\OneDrive\\Documents\\Students.xlsx")
df = pd.DataFrame(dt)
print(df)




df['Total_Marks'] = 0
print(df)




df['Total_Marks'] = df['Hindi']+df['English']
df







Join us: https://t.me/jupyter_python

SORTING DATAFRAME (BY COLUMN) IN PANDAS - PYTHON PROGRAMMING

#SORTING DATAFRAME (BY COLUMN) IN PANDAS 


#clcoding

import pandas as pd

dt = pd.read_excel("FILE_NAME")

print(dt)

df = pd.DataFrame(dt)

df.sort_values("MAXMTEMPERATURE", ascending = False)










Join us: https://t.me/jupyter_python 

Monday, 21 June 2021

How do you reverse the string without take another string?



#How do you reverse the string without take another string?
#clcoding
s = 'hello'
n = -1
for x in s:
    n += 1
while n >= 0:
    print(s[n], end = '')
    n -= 1








Join us: https://t.me/jupyter_python

Sunday, 20 June 2021

MATHEMATICAL FUNCTIONS ON SERIES IN PANDAS [Boolean Functions] - PYTHON PROGRAMMING


1] Greater than

import pandas as pd

s1 = pd.Series([10,20,120,40,150])

s2 = pd.Series([70,80,90,100,110])

s1>(s2)




2] Less than

import pandas as pd

s1 = pd.Series([10,20,120,40,150])

s2 = pd.Series([70,80,90,100,110])

s1<(s2)





3] Equal to

import pandas as pd

s1 = pd.Series([10,20,120,40,150])

s2 = pd.Series([70,20,90,40,110])

s1==(s2)





Join us: https://t.me/jupyter_python 

MATHEMATICAL FUNCTIONS ON SERIES IN PANDAS [Part 1] - PYTHON PROGRAMMING


1] Addition 

#clcoding
import pandas as pd

s1 = pd.Series([10,20,30,40,50])

s2 = pd.Series([70,80,90,100,110])

 s1.add(s2)







2] Subtraction

import pandas as pd

s1 = pd.Series([10,20,30,40,50])

s2 = pd.Series([70,80,90,100,110])

s1.subtract(s2)




 
3] Multiplication

import pandas as pd

s1 = pd.Series([10,20,30,40,50])

s2 = pd.Series([70,80,90,100,110])

s1.multiply(s2)







4] Division

import pandas as pd

s1 = pd.Series([10,20,30,40,50])

s2 = pd.Series([70,80,90,100,110])

s1.divide(s2)

        
 
                                                                      

   

Join us: https://t.me/jupyter_python

Saturday, 19 June 2021

ATTRIBUTES OF SERIES IN PANDAS - PYTHON PROGRAMMING

ATTRIBUTES OF SERIES IN PANDAS


Index - Series.index - Return all index values
Array - Series.array - Return all index values
Values - Series.values - Return values of series
Name - Series.name - Return the name of Series
Shape - Series.shape - Return the shape
Ndim - Series.ndim - Return the dimension of series
Size - Series.size - Return the size of series
Nbytes - Series.nbytes - Returns the memory occupied
memory-usage - Series.memory-usage() - Returns memory occupied by both index & values






Join us: https://t.me/jupyter_python

Friday, 18 June 2021

How do you find dayname of particular date of year?






#How do you find dayname of particular date of year?

#Clcoding

import calendar as cal

dayname = ['MONDAY', 'TUESDAY', 'WEDNESDAY', 'THURSDAY', 
          'FRIDAY', 'SATURDAY', 'SUNDAY']

inx = cal.weekday(2021,6,18)

dayname[inx]






Join us: https://t.me/jupyter_python Like us: https://www.facebook.com/pirawenpython

Thursday, 17 June 2021

How to make a text in python colorfull.





#how to make a text in python colorfull. 
#clcoding
print("\033[92mIf you like this post, Upvote it")    
print("\033[96mIf you like this post, Upvote it")    
print("\033[93mIf you like this post, Upvote it")    
print("\033[95mIf you like this post, Upvote it")    
print("\033[1mIf you like this post, Upvote it")    
print("\033[4mIf you like this post, Upvote it")    
print("\033[94mIf you like this post, Upvote it")  


Join us: https://t.me/jupyter_python Like us: https://www.facebook.com/pirawenpython

How to use class and method without creating object




#How to use class and method without creating object

#clcoding

class fruit:

    def is_sweet():

        return True
    
if fruit.is_sweet():
        print("Yes")
else:
        print("No")




Join us: https://t.me/jupyter_python

How do you find which string largest between two strings?



#HOW TO WHICH STRING IS LARGEST BETWEEN TWO STRINGS


#clcoding

str1 = 'Clcoding'

str2 = 'ClcodingPython'

max(str1,str2)





#HOW TO WHICH STRING IS LARGEST BETWEEN TWO STRINGS

#clcoding

str1 = 'Clcoding'

str2 = 'ClcodingPython'

if str1>str2:

    print(str1,'is the largest string')

else:

    print(str2,'is the largest string')




Join us: https://t.me/jupyter_python Like us: https://www.facebook.com/pirawenpython
Codecademy Code Foundations

Popular Posts

Categories

Android (23) AngularJS (1) Assembly Language (2) Books (10) C (75) C# (12) C++ (81) Course (1) Data Strucures (4) Downloads (1) Engineering (13) flutter (1) FPL (17) Hadoop (1) HTML&CSS (38) IS (25) Java (87) Leet Code (4) Pandas (1) PHP (20) Projects (17) Python (264) R (69) Selenium Webdriver (2) Software (14) SQL (27)