Wednesday, 12 November 2025

Python Coding Challenge - Question with Answer (01131125)

 


Explanation:

Create a List
nums = [2, 4, 6]

A list named nums is created with three integer elements: 2, 4, and 6.

This will be used to calculate the average of its elements later.

Initialize Loop Control Variables
i = 0
s = 0

i → Acts as a loop counter, starting from 0.

s → A sum accumulator initialized to 0.
It will store the running total of the numbers in the list.

Start the While Loop
while i < len(nums):

The loop runs as long as i is less than the length of the list nums.

Since len(nums) is 3, this means the loop will run while i = 0, 1, 2.

This ensures every element in the list is processed once.

Add the Current Element to the Sum
    s += nums[i]

At each loop iteration:

The element at index i is accessed: nums[i].

It is added to the sum s.

Example of how s changes:

When i=0: s = 0 + 2 = 2

When i=1: s = 2 + 4 = 6

When i=2: s = 6 + 6 = 12

Increment the Loop Counter
    i += 1

After processing one element, i increases by 1.

This moves to the next element of the list in the next iteration.

Print the Final Result
print(s // len(nums))

Once the loop ends, the total sum s is 12.

The expression s // len(nums) performs integer division:

12 // 3 = 4

Hence, it prints the average (integer form) of the list elements.

Final Output

4

Probability and Statistics using Python


Top 8 Python Libraries for Deep Learning in 2026

 


1 Tensorflow: The insdustry standard

import tensorflow as tf

x = tf.constant([[1.0, 2.0], [3.0, 4.0]])
y = tf.constant([[5.0, 6.0], [7.0, 8.0]])
result = tf.matmul(x, y)
print(result)

Output:

tf.Tensor(
[[19. 22.]
 [43. 50.]], shape=(2, 2), dtype=float32)

2. Pytocrh- Reasearchers favourite

import torch
x-torch.tensor([[1.,2.],[3.,4.]])
y=torch.tensor([[2.,0.],[0.,2.]])
print(torch.mm(x,y))

Output:

tensor([[2., 4.],
        [6., 8.]])


3. Kera- The beginner deep learning Friend

from tensorflow import keras
from tensorflow.keras import layers
model=keras.Sequential([
    keras.Input(shape=(3,)),
    layers.Dense(4,activation='relu'),
    layers.Dense(1)
])
model.summary()

Output:

5 Lightweight ML Frameworks You Should Know in 2026

 


1. Scikit-learn — The All-Rounder ML Toolkit


from sklearn.linear_model import LinearRegression
import numpy as np
X=np.array([[1],[2],[3],[4]])
y=np.array([2,4,6,8])

model=LinearRegression().fit(X,y)
print("Prediction fopr input 5:",model.predict([[5]]))
#source code --> clcoding.com 

Output:

Prediction fopr input 5: [10.]


2. Statsmodel- For classic statisticl ML


import statsmodels.api as sm
import numpy as np
x=np.array([1,2,3,4])
y=np.array([2,4,6,8])
X=sm.add_constant(X)
model=sm.OLS(y,X).fit()
print(model.params)

#source code --> clcoding.com 

Output:

[0. 2.]


3. LightGBM — Fast Gradient Boosting by Microsoft


import lightgbm as lgb
import numpy as np
X=np.random.rand(10,3)
y=np.random.randint(0,2,10)
train_data=lgb.Dataset(X,label=y)
params={'objective':'binary','verbose':-1}
model=lgb.train(params,train_data,num_boost_round=10)
print("prediction:",model.predict(X[:3]))
#source code --> clcoding.com 

Output:

Predictions: [0.59171517 0.79370218 0.41264801 0.71209377 0.61403022 0.11052331
 0.18246353 0.61790422 0.72845184 0.49394298]

4.CatBoost — High-Performance Boosting by Yandex


from catboost import CatBoostRegressor
import numpy as np
X = np.random.rand(10, 3)
y = np.random.rand(10)
model = CatBoostRegressor(verbose=0)
model.fit(X, y)

predictions = model.predict(X)
print("Predictions:", predictions)
#source code --> clcoding.com 

Output:

Predictions: [0.59171517 0.79370218 0.41264801 0.71209377 0.61403022 0.11052331
 0.18246353 0.61790422 0.72845184 0.49394298]


5. H2O.ai— Scalable Yet Lightweight ML Framework


import h2o
from h2o.estimators.glm import  H2OGeneralizedLinearEstimator

h2o.init(max_mem_size="256M")
data=h20.H20Frame({'x':[1,2,3,4],'y':[2,4,6,8]})
model=H2OGeneralizedLinearEstimator(family="gaussian")
model.train(x=['x'],y='y',training_frame=data)
print(model.predict(data).head())

#source code --> clcoding.com 

Output:

Checking whether there is an H2O instance running at http://localhost:54321.....

Popular Posts

Categories

100 Python Programs for Beginner (118) AI (190) Android (25) AngularJS (1) Api (7) Assembly Language (2) aws (28) Azure (8) BI (10) Books (262) Bootcamp (1) C (78) C# (12) C++ (83) Course (84) Coursera (299) Cybersecurity (29) data (1) Data Analysis (25) Data Analytics (18) data management (15) Data Science (257) Data Strucures (15) Deep Learning (106) Django (16) Downloads (3) edx (21) Engineering (15) Euron (30) Events (7) Excel (18) Finance (9) flask (3) flutter (1) FPL (17) Generative AI (54) Git (9) Google (47) Hadoop (3) HTML Quiz (1) HTML&CSS (48) IBM (41) IoT (3) IS (25) Java (99) Leet Code (4) Machine Learning (230) Meta (24) MICHIGAN (5) microsoft (9) Nvidia (8) Pandas (13) PHP (20) Projects (32) Python (1246) Python Coding Challenge (994) Python Mistakes (43) Python Quiz (408) Python Tips (5) Questions (3) R (72) React (7) Scripting (3) security (4) Selenium Webdriver (4) Software (19) SQL (46) Udemy (17) UX Research (1) web application (11) Web development (8) web scraping (3)

Followers

Python Coding for Kids ( Free Demo for Everyone)