Wednesday 31 January 2024

Artificial Intelligence with Python Cookbook: Proven recipes for applying AI algorithms and deep learning techniques using TensorFlow 2.x and PyTorch 1.6

 



Work through practical recipes to learn how to solve complex machine learning and deep learning problems using Python

Key Features

Get up and running with artificial intelligence in no time using hands-on problem-solving recipes

Explore popular Python libraries and tools to build AI solutions for images, text, sounds, and images

Implement NLP, reinforcement learning, deep learning, GANs, Monte-Carlo tree search, and much more

Book Description

Artificial intelligence (AI) plays an integral role in automating problem-solving. This involves predicting and classifying data and training agents to execute tasks successfully. This book will teach you how to solve complex problems with the help of independent and insightful recipes ranging from the essentials to advanced methods that have just come out of research.

Artificial Intelligence with Python Cookbook starts by showing you how to set up your Python environment and taking you through the fundamentals of data exploration. Moving ahead, you’ll be able to implement heuristic search techniques and genetic algorithms. In addition to this, you'll apply probabilistic models, constraint optimization, and reinforcement learning. As you advance through the book, you'll build deep learning models for text, images, video, and audio, and then delve into algorithmic bias, style transfer, music generation, and AI use cases in the healthcare and insurance industries. Throughout the book, you’ll learn about a variety of tools for problem-solving and gain the knowledge needed to effectively approach complex problems.

By the end of this book on AI, you will have the skills you need to write AI and machine learning algorithms, test them, and deploy them for production.

What you will learn

Implement data preprocessing steps and optimize model hyperparameters

Delve into representational learning with adversarial autoencoders

Use active learning, recommenders, knowledge embedding, and SAT solvers

Get to grips with probabilistic modeling with TensorFlow probability

Run object detection, text-to-speech conversion, and text and music generation

Apply swarm algorithms, multi-agent systems, and graph networks

Go from proof of concept to production by deploying models as microservices

Understand how to use modern AI in practice

Who this book is for

This AI machine learning book is for Python developers, data scientists, machine learning engineers, and deep learning practitioners who want to learn how to build artificial intelligence solutions with easy-to-follow recipes. You’ll also find this book useful if you’re looking for state-of-the-art solutions to perform different machine learning tasks in various use cases. Basic working knowledge of the Python programming language and machine learning concepts will help you to work with code effectively in this book.

Table of Contents

Getting Started with Artificial Intelligence in Python

Advanced Topics in Supervised Machine Learning

Patterns, Outliers, and Recommendations

Probabilistic Modeling

Heuristic Search Techniques and Logical Inference

Deep Reinforcement Learning

Advanced Image Applications

Working with Moving Images

Deep Learning in Audio and Speech

Natural Language Processing

Artificial Intelligence in Production

Hard Copy: Artificial Intelligence with Python Cookbook: Proven recipes for applying AI algorithms and deep learning techniques using TensorFlow 2.x and PyTorch 1.6

0 Comments:

Post a Comment

Popular Posts

Categories

AI (27) Android (24) AngularJS (1) Assembly Language (2) aws (17) Azure (7) BI (10) book (4) Books (114) C (77) C# (12) C++ (82) Course (60) Coursera (176) coursewra (1) Cybersecurity (22) data management (11) Data Science (89) Data Strucures (6) Deep Learning (9) Django (6) Downloads (3) edx (2) Engineering (14) Excel (13) Factorial (1) Finance (5) flutter (1) FPL (17) Google (19) Hadoop (3) HTML&CSS (46) IBM (25) IoT (1) IS (25) Java (92) Leet Code (4) Machine Learning (44) Meta (18) MICHIGAN (5) microsoft (3) Pandas (3) PHP (20) Projects (29) Python (742) Python Coding Challenge (194) Questions (2) R (70) React (6) Scripting (1) security (3) Selenium Webdriver (2) Software (17) SQL (40) UX Research (1) web application (8)

Followers

Person climbing a staircase. Learn Data Science from Scratch: online program with 21 courses