1. Use df.query() for clean filtering
import pandas as pd df=pd.DataFrame({ "name":["Alice","Bob","Charlie"], "age": [24,34,26] }) df.query("age>25") #source code --> clcoding.com
Output:
name age 1 Bob 34 2 Charlie 26
2. Use df.assign() to add column
df=pd.DataFrame({"A":[1,2,3]})
df=df.assign(B=df.A*10)
df
#source code --> clcoding.com
Output:
A B 0 1 10 1 2 20 2 3 30
3. Use df.rename() with dictionary
df=df.rename(columns={"A":"col_A","B":"col_B"})
df
#source code --> clcoding.com
Output:
col_A col_B 0 1 10 1 2 20 2 3 30
4. Use df.nlargest() to get top n values
df = pd.DataFrame({"score": [50, 90, 80, 95]})
df.nlargest(2, "score")
#source code --> clcoding.com
Output:
score 3 95 1 90
5. Ise df.sample() to pick random rows
df.sample(2)
#source code --> clcoding.com
Output:
score 2 80 0 50
6. Use df.drop_duplicates() to clean data
df = pd.DataFrame({"A":[1,1,2,2,3], "B":[10,10,20,20,30]})
df.drop_duplicates()
#source code --> clcoding.com
Output:
A B 0 1 10 2 2 20 4 3 30
7. Use df.to_clipboard() to copy
df.to_clipboard(index=False)
df
#source code --> clcoding.com
Output:
A B 0 1 10 1 1 10 2 2 20 3 2 20 4 3 30
8. Use df.style() for quick visual highlight
df = pd.DataFrame({
"name": ["A", "B", "C"],
"score": [50, 90, 75]
})
df.style.highlight_max("score")
#source code --> clcoding.com
Output:
name score 0 A 50 1 B 90 2 C 75
9. Use df.memory_usage() to see memory footprint
df.memory_usage()
#source code --> clcoding.com
Output:


0 Comments:
Post a Comment