1. explode()=Turns list items into rows
import pandas as pd df = pd.DataFrame({"Name": ["A", "B"], "Tags": [["x", "y"], ["p", "q"]]}) df.explode("Tags") #source code --> clcoding.com
Output:
Name Tags 0 A x 0 A y 1 B p 1 B q
2. query()- Filter rows using expression
df = pd.DataFrame({"Age":[20,25,30], "Score":[90,85,70]})
df.query("Age > 22 and Score > 80")
#source code --> clcoding.com
Output:
Age Score 1 25 85
3. nlargets()- Get the top n rows
df=pd.DataFrame({"Name":["A","B","C"],"Marks":[50,95,80]})
df.nlargest(1,"Marks")
#source code --> clcoding.comOutput:
Name Marks 1 B 95
4. nsmallest()- Get the lowest n rows
df=pd.DataFrame({"A":[10,3,7],"B":[4,9,1]})
df.nsmallest(2,"A")
#source code --> clcoding.com
Output:
A B 1 3 9 2 7 1
5. pivot_table()- Create summary table automatically
df=pd.DataFrame({
"City":["A","A","B","B"],
"Sales": [10,20,30,5]
})
df.pivot_table(values="Sales",index="City",aggfunc="sum")
#source code --> clcoding.com
Output:
Sales City A 30 B 35
6. fillna(method="ffill")- Fills missing values forward
df = pd.DataFrame({"X":[1,None,None,4]})
df.fillna(method="ffill")
#source code --> clcoding.com
Output:
X 0 1.0 1 1.0 2 1.0 3 4.0
7. assign()- Adds new column cleanly
df = pd.DataFrame({"A":[1,2,3]})
df = df.assign(B=df.A * 10)
print(df)
#source code --> clcoding.com
Output:
A B
0 1 10
1 2 20
2 3 30
.png)


